Riemann-Geometrie

Riemann-Geometrie
Riemann-Geometrie
 
[nach G. F. B. Riemann], System geometrischer Sätze für n-dimensionale Räume (riemannscher Raum), das die die euklidische Geometrie und die nichteuklidischen Geometrien als Sonderfälle enthält. Die Riemann-Geometrie beantwortet die Frage nach möglichen Gestaltsverhältnissen des Raumes, unter der Annahme, dass infinitesimal kleine Dreiecke stets die Winkelsumme von zwei rechten Winkeln haben. Es zeigt sich, dass der Raum dann eine von Ort zu Ort verschiedene Krümmung haben kann, die mathematisch durch den riemannschen Krümmungstensor beschrieben wird. Der Begriff der Geraden, die zwei Punkte verbindet, wird dabei ersetzt durch den Begriff der kürzesten Linie zwischen diesen Punkten (geodätische Linie). Ein von solchen Linien gebildetes Dreieck kann von Fall zu Fall eine ganz verschiedene Winkelsumme haben.
 
Die nichteuklidische Geometrie im älteren Sinn behandelt Räume konstanter Krümmung, in denen es - anders als im euklidischen Raum - nicht mehr ähnliche Dreiecke verschiedener Größe gibt, immerhin aber jedes Dreieck verzerrungsfrei im Raum bewegt werden kann. Die Riemann-Geometrie ist das wichtigste mathematische Hilfsmittel der allgemeinen Relativitätstheorie.

Universal-Lexikon. 2012.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Géométrie — Traditionnellement, la géométrie est la partie des mathématiques qui étudie les figures du plan et de l espace (géométrie euclidienne). Depuis la fin du XVIIIe siècle, la géométrie étudie également les figures appartenant à d autres types d… …   Wikipédia en Français

  • GÉOMÉTRIE — La géométrie est communément définie comme la science des figures de l’espace. Cette définition un peu incertaine risque de conduire à inclure dans la géométrie des questions qui ne sont géométriques que dans leur langage, mais relèvent en fait… …   Encyclopédie Universelle

  • Geometrie non euclidienne — Géométrie non euclidienne On nomme géométrie non euclidienne une théorie géométrique modifiant au moins un des axiomes postulés par Euclide dans les Éléments. La droite d est la seule droite passant par le point M et parallèle à la droite D. Tout …   Wikipédia en Français

  • Géométrie Non Euclidienne — On nomme géométrie non euclidienne une théorie géométrique modifiant au moins un des axiomes postulés par Euclide dans les Éléments. La droite d est la seule droite passant par le point M et parallèle à la droite D. Tout autre droite passant par… …   Wikipédia en Français

  • Géométrie non-euclidienne — On nomme géométrie non euclidienne une théorie géométrique modifiant au moins un des axiomes postulés par Euclide dans les Éléments. La droite d est la seule droite passant par le point M et parallèle à la droite D. Tout autre droite passant par… …   Wikipédia en Français

  • GÉOMÉTRIE ALGÉBRIQUE — Sous sa forme actuelle, la géométrie algébrique est une branche de l’algèbre relativement récente (cf. ALGÈBRE, DEDEKIND). Pour «comprendre» les phénomènes d’intersection des courbes et des surfaces, il s’est révélé nécessaire d’élaborer des… …   Encyclopédie Universelle

  • RIEMANN (B.) — Après la mort de Georg Friedrich Bernhard Riemann, son œuvre fut publiée en un seul volume, y compris les fragments posthumes, et cette brièveté ne tient pas seulement à la fin précoce du mathématicien: d’une part, ses démonstrations sont très… …   Encyclopédie Universelle

  • Geometrie — Géométrie La géométrie est la partie des mathématiques qui étudie les figures de l espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, aux figures de d autres types d espaces (géométrie projective, géométrie non… …   Wikipédia en Français

  • Geometrie euclidienne — Géométrie euclidienne Euclide. La géométrie euclidienne commence avec les Éléments d Euclide, qui est à la fois une somme des connaissances géométriques de l époque et une tentative de formalisation mathématique de ces connaissances. Les notions… …   Wikipédia en Français

  • Géometrie — Géométrie La géométrie est la partie des mathématiques qui étudie les figures de l espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, aux figures de d autres types d espaces (géométrie projective, géométrie non… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”